An Efficient Mechanism for Computational Improvement in Machine Learning Using Approximate Computing
An Efficient Mechanism for Computational Improvement in Machine Learning Using Approximate Computing
An Efficient Mechanism for Computational Improvement in Machine Learning Using Approximate Computing
نوع: Type: thesis
مقطع: Segment: masters
عنوان: Title: An Efficient Mechanism for Computational Improvement in Machine Learning Using Approximate Computing
ارائه دهنده: Provider: leila mirzaei mosbat
اساتید راهنما: Supervisors: Dr. Mahdi Abbassi
اساتید مشاور: Advisory Professors:
اساتید ممتحن یا داور: Examining professors or referees: 2023
زمان و تاریخ ارائه: Time and date of presentation: 1402/07/15 ساعت 10:30
مکان ارائه: Place of presentation: Engineering amphitheater
چکیده: Abstract: The design and implementation of neural networks for deep learning is currently the focus of many industries and academics. However, the computational overhead, speed, and resource consumption of neural networks are the main bottlenecks for model implementation in edge computing platforms such as mobile devices and the Internet of Things. Hence, the use of methods that allow improving the energy efficiency and operational speed of neural networks without compromising program accuracy or increasing hardware costs are critical for the widespread deployment of neural networks. One of the methods used to improve efficiency and increase speed in neural networks is the method of approximate calculations. Approximate computing has emerged as a new approach for energy efficient design as well as increasing the performance speed of a computing system, by reducing limited accuracy. Due to the iterative nature of the learning process, neural networks show inherent flexibility against small errors and make the use of the approximate computing model a promising technique to improve the characteristic of speed and power consumption. In neural networks, calculations based on multiplication and addition are used in the layers of the neural network, which requires a lot of time and energy to perform multiplication calculations. In this thesis, the aim is to examine the time, speed and resource consumption requirements of neural networks and to reduce these requirements by presenting a new computational method called DeepAdd. In this method, the operation of multiplying the weights at the input of different layers of the neural network has been reduced to an approximate addition operation. Finally, the performance of the conducted research will be evaluated and compared with previous existing methods. The use of the proposed approximate architecture of this research has been investigated in several neural networks. The obtained experimental results indicate that the use of the proposed DeepAdd mechanism, compared to the original model and the approximate model based on bit shift, improves the parameters of time and speed in the training and inference phases of neural networks and also reduces the consumption of resources. According to the experimental results, the DeepAdd architecture compared to the basic architecture and the approximate shift-based architecture in terms of time and speed in multi-layer perceptron simple neural networks in the model training phase is improved by 3.38% and 0.44%, respectively, and in the inference phase as well. It has improved by 9.30% and 2.5% respectively. Also, the architecture based on the DeepAdd aggregate compared to the basic architecture and the approximate architecture based on the shift in terms of time and speed in CNN networks also improved by 2.91% and 0.6% respectively in the model training phase and by 0.6% in the inference phase respectively. 5.51 and 2.45% improved
به اطلاع متقاضیان دکترای سال تحصیلی 1404-1403 رشته های مهندسی (مکانیک - کامپیوتر - برق - مواد - عمران - صنایع) دانشگاه بوعلی سینا می رساند، فهرست اساتید پذیرنده دانشکده مهندسی...
به اطلاع می رساند یک شرکت دانش بنیان در اصفهان نیازمند خدمات تحقیقاتی دانش آموختگان رشته های مواد و شیمی بوده و استخدام می کند. علاقمندان جهت کسب اطلاعات بیشتر و هماهنگی با شماره 03133879868 در...
به گزارش بسنا، مراسم افتتاحیه این پروژه با حضور محمدعلی زلفیگل وزیر علوم، تحقیقات و فناوری و دکتر علیرضا قاسمیفرزاد استاندار همدان، معاونان وزارتخانههای علوم و مسئولان استانی و ریاست...
دفتر هدایت استعدادهای درخشان دانشگاه بوعلیسینا فهرست اسامی دانشجویان برگزیده آموزشی پژوهشی پانزدهمین همایش سالانه دفتر هدایت استعدادهای درخشان سال ۱۴۰۲ را منتشر کرد. اسامی دانشجویان...
بهراد توتونچی دبیر انجمن علمی دانشجویی مهندسی عمران دانشگاه بوعلی سینا، در جلسه ای با حضور نمایندگان دانشگاه های سراسر کشور، با کسب اکثریت آرا انتخابات، به عنوان دبیر...
در هشتمین نشست از دوره یازدهم هیأت ممیزه دانشگاه بوعلیسینا، آقای دکتر علیرضا حاتمی دارای مدرک دکتری در رشته مهندسی برق با ر أ ی اعضاء از مرتبه...
بدینوسیله انتخاب آقای دکتر آرش فتاح الحسینی را به عنوان پژوهشگر برگزیده دانشگاه در گروه فنی و مهندسی به ایشان و خانواده علمی دانشکده مهندسی تبریک عرض نموده و از خداوند متعال...
بدینوسیله انتخاب دو تن از دانشجویان دانشکده مهندسی مهندس راضیه چهارمحالی در مقطع دکتری رشته مهندسی مواد شاخه خوردگی و مهندسی سطح و مهندس امین نظری در مقطع...
بدینوسیله انتخاب سه عضو هیات علمی دانشکده مهندسی جناب آقایان دکتر جواد بهنامیان ، دکتر حسن علم خواه و دکتر محسن گودرزی در...
براساس اطلاعات پایگاه شاخصهای اساسی علم (ESI)، حضوردکتر محمد حسن مرادی از گروه مهندسی برق دانشکده مهندسی در زمره پژوهشگران پراستناد یک درصد برتر دنیا استمرار پیدا کرد. ...
بدینوسیله انتخاب اعضا محترم هیات علمی سرکار خانم دکتر سموئی (گروه مهندسی صنایع)، جناب آقایان دکتر بابائی (گروه مهندسی عمران)، دکتر حاتمی (گروه مهندسی برق)، دکتر ختن لو (گروه مهندسی...
بدینوسیله انتخاب چهار عضو هیات علمی دانشکده مهندسی جناب آقای دکتر جواد بهنامیان از گروه مهندسی صنایع به عنوان پژوهشگر اول برگزیده، جناب آقای دکتر حسن علم خواه از گروه...
به گزارش بسنا و به نقل از سازمان سنجش، آزمون مرحله نهایی بیست و هشتمین دوره المپیاد علمی دانشجویی کشور با حضور نفرات برگزیده آزمون کارشناسی ارشد (متمرکز) و آزمون غیرمتمرکز المپیاد در دانشگاههای...
به اطلاع دانشجویان محترم می رساند سایت کامپیوتر کارشناسی دانشکده مهندسی به دلیل انجام ثبت نام دانشجویان کارشناسی ورودی 1402 از شنبه 1402/7/22 به مدت یک هفته تعطیل می باشد.
به گزارش بسنا و به نقل از معاونت علمی فناوری ریاست جمهوری، در هشتمین دوره تجلیل از سرآمدان علمی کشور در سال ۱۴۰۲ که با حضور معاون علمی و فناوری و اقتصاد دانشبنیان رئیسجمهور و وزیر علوم...
به اطلاع دانشجویان ورودی جدید تحصیلات تکمیلی (ارشد و دکترا) می رساند، یکشنبه 23 مهر ساعت 11 الی 13 در محل آمفی تئاتر دانشکده مهندسی جلسه معارفه با هیات رییسه دانشکده برگزار می شود. ...
بر اساس اطلاعات جدید نمایه استنادی معتبر scopus ۲۰۲۳، با بررسی مقالات مربوط به ۲۰۲۲، 4 عضو هیات علمی و 1 دانش آموخته دانشکده مهندسی و با بررسی کل مقالات مربوط به سال های مختلف، 1 نفر از اعضای هیات...
نظر به مراتب تعهد، تخصص و تجارب ارزشمند جناب آقای دکتر حسن علم خواه و بنا به پیشنهاد رئیس دانشکده مهندسی، به موجب ابلاغی ایشان با حفظ سمت آموزشی به مدت 2 سال به عنوان...
در حکمی از طرف ریاست دانشگاه آقای دکتر امیرسامان خیرخواه به عنوان مدیر گروه رشته مهندسی صنایع منصوب گردید. در این حکم آمده است : « با احترام و آرزوی توفیق الهی، نظر به مراتب تعهد و تجارب...
در حکمی از طرف ریاست دانشگاه آقای دکتر صالح رازینی به عنوان مدیر گروه رشته مهندسی برق منصوب گردید. در این حکم آمده است : « با احترام و آرزوی توفیق الهی، نظر به مراتب تعهد و تجارب ارزنده...