Predicting infectious disease using big data analytics
Predicting infectious disease using big data analytics
Predicting infectious disease using big data analytics
نوع: Type: thesis
مقطع: Segment: masters
عنوان: Title: Predicting infectious disease using big data analytics
ارائه دهنده: Provider: Fateme Mohseni
اساتید راهنما: Supervisors: Dr Morteza Youssef Sanati
اساتید مشاور: Advisory Professors:
اساتید ممتحن یا داور: Examining professors or referees: Dr Moharram Mansourizadeh, Dr Mehdi Sakhaei Nia
زمان و تاریخ ارائه: Time and date of presentation: 11/03/2023
مکان ارائه: Place of presentation: Amphitheater
چکیده: Abstract: Today, health prediction in modern life is very necessary due to the large volume, variety and constant updating of medical data, which big data analysis provides new opportunities to improve health care. Health status vision provides optimization of resources and efficiency of organizations in the health sector, for this purpose, we need advanced analytical frameworks to store, filter and analyze data to Be able to make quick and timely decisions. By storing and recording examinations and visits of patients and those who refer to medical centers, the amount of information that is collected is growing, so a correct and timely analysis of the amount of data produced in health can be advanced. It leads to disease, which saves human lives, and since infectious diseases are among the most common causes of death, early prediction can be done using big data analysis. It can prevent the spread of some diseases, and sometimes in the case of a specific disease, the disease can be diagnosed early and its treatment can be started, which will save a lot of treatment costs. In this research, random forest classification in machine learning, which is a common method of tree collection and manages big data well; Used. However, the random forest implementation in MLlib is very inefficient for training deep decision tree models, which is required to achieve good predictive performance on our data. Therefore, we focus on improving the performance of random forest training in the MLlib library from Spark. This model is then used to work in real time to classify the tweet as whether the person has hepatitis disease or not. In this proposed method, the real-time hepatitis disease prediction system contains three main parts: offline model building, current processing method, and online prediction. This system was developed based on the integration of big data frameworks such as: Apache Spark and Kafka
به اطلاع متقاضیان دکترای سال تحصیلی 1404-1403 رشته های مهندسی (مکانیک - کامپیوتر - برق - مواد - عمران - صنایع) دانشگاه بوعلی سینا می رساند، فهرست اساتید پذیرنده دانشکده مهندسی...
به اطلاع می رساند یک شرکت دانش بنیان در اصفهان نیازمند خدمات تحقیقاتی دانش آموختگان رشته های مواد و شیمی بوده و استخدام می کند. علاقمندان جهت کسب اطلاعات بیشتر و هماهنگی با شماره 03133879868 در...
به گزارش بسنا، مراسم افتتاحیه این پروژه با حضور محمدعلی زلفیگل وزیر علوم، تحقیقات و فناوری و دکتر علیرضا قاسمیفرزاد استاندار همدان، معاونان وزارتخانههای علوم و مسئولان استانی و ریاست...
دفتر هدایت استعدادهای درخشان دانشگاه بوعلیسینا فهرست اسامی دانشجویان برگزیده آموزشی پژوهشی پانزدهمین همایش سالانه دفتر هدایت استعدادهای درخشان سال ۱۴۰۲ را منتشر کرد. اسامی دانشجویان...
بهراد توتونچی دبیر انجمن علمی دانشجویی مهندسی عمران دانشگاه بوعلی سینا، در جلسه ای با حضور نمایندگان دانشگاه های سراسر کشور، با کسب اکثریت آرا انتخابات، به عنوان دبیر...
در هشتمین نشست از دوره یازدهم هیأت ممیزه دانشگاه بوعلیسینا، آقای دکتر علیرضا حاتمی دارای مدرک دکتری در رشته مهندسی برق با ر أ ی اعضاء از مرتبه...
بدینوسیله انتخاب آقای دکتر آرش فتاح الحسینی را به عنوان پژوهشگر برگزیده دانشگاه در گروه فنی و مهندسی به ایشان و خانواده علمی دانشکده مهندسی تبریک عرض نموده و از خداوند متعال...
بدینوسیله انتخاب دو تن از دانشجویان دانشکده مهندسی مهندس راضیه چهارمحالی در مقطع دکتری رشته مهندسی مواد شاخه خوردگی و مهندسی سطح و مهندس امین نظری در مقطع...
بدینوسیله انتخاب سه عضو هیات علمی دانشکده مهندسی جناب آقایان دکتر جواد بهنامیان ، دکتر حسن علم خواه و دکتر محسن گودرزی در...
براساس اطلاعات پایگاه شاخصهای اساسی علم (ESI)، حضوردکتر محمد حسن مرادی از گروه مهندسی برق دانشکده مهندسی در زمره پژوهشگران پراستناد یک درصد برتر دنیا استمرار پیدا کرد. ...
بدینوسیله انتخاب اعضا محترم هیات علمی سرکار خانم دکتر سموئی (گروه مهندسی صنایع)، جناب آقایان دکتر بابائی (گروه مهندسی عمران)، دکتر حاتمی (گروه مهندسی برق)، دکتر ختن لو (گروه مهندسی...
بدینوسیله انتخاب چهار عضو هیات علمی دانشکده مهندسی جناب آقای دکتر جواد بهنامیان از گروه مهندسی صنایع به عنوان پژوهشگر اول برگزیده، جناب آقای دکتر حسن علم خواه از گروه...
به گزارش بسنا و به نقل از سازمان سنجش، آزمون مرحله نهایی بیست و هشتمین دوره المپیاد علمی دانشجویی کشور با حضور نفرات برگزیده آزمون کارشناسی ارشد (متمرکز) و آزمون غیرمتمرکز المپیاد در دانشگاههای...
به اطلاع دانشجویان محترم می رساند سایت کامپیوتر کارشناسی دانشکده مهندسی به دلیل انجام ثبت نام دانشجویان کارشناسی ورودی 1402 از شنبه 1402/7/22 به مدت یک هفته تعطیل می باشد.
به گزارش بسنا و به نقل از معاونت علمی فناوری ریاست جمهوری، در هشتمین دوره تجلیل از سرآمدان علمی کشور در سال ۱۴۰۲ که با حضور معاون علمی و فناوری و اقتصاد دانشبنیان رئیسجمهور و وزیر علوم...
به اطلاع دانشجویان ورودی جدید تحصیلات تکمیلی (ارشد و دکترا) می رساند، یکشنبه 23 مهر ساعت 11 الی 13 در محل آمفی تئاتر دانشکده مهندسی جلسه معارفه با هیات رییسه دانشکده برگزار می شود. ...
بر اساس اطلاعات جدید نمایه استنادی معتبر scopus ۲۰۲۳، با بررسی مقالات مربوط به ۲۰۲۲، 4 عضو هیات علمی و 1 دانش آموخته دانشکده مهندسی و با بررسی کل مقالات مربوط به سال های مختلف، 1 نفر از اعضای هیات...
نظر به مراتب تعهد، تخصص و تجارب ارزشمند جناب آقای دکتر حسن علم خواه و بنا به پیشنهاد رئیس دانشکده مهندسی، به موجب ابلاغی ایشان با حفظ سمت آموزشی به مدت 2 سال به عنوان...
در حکمی از طرف ریاست دانشگاه آقای دکتر امیرسامان خیرخواه به عنوان مدیر گروه رشته مهندسی صنایع منصوب گردید. در این حکم آمده است : « با احترام و آرزوی توفیق الهی، نظر به مراتب تعهد و تجارب...
در حکمی از طرف ریاست دانشگاه آقای دکتر صالح رازینی به عنوان مدیر گروه رشته مهندسی برق منصوب گردید. در این حکم آمده است : « با احترام و آرزوی توفیق الهی، نظر به مراتب تعهد و تجارب ارزنده...